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We consider a SOS type model of interfaces on a substrate which is both
heterogeneous and rough. We first show that, for appropriate values of the
parameters, the differential wall tension that governs wetting on such a sub-
strate satisfies a generalized law which combines both Cassie and Wenzel laws.
Then in the case of an homogeneous substrate, we show that this differential
wall tension satisfies either the Wenzel’s law or the Cassie’s law, according to
the values of the parameters.

KEY WORDS: SOS models; Wenzel’s law; Cassie’s law; wetting; roughness;
interfaces.

1. INTRODUCTION

The wettability of surfaces plays an important role in many technological
processes. Since Young’s work, two centuries ago, one usually characterizes
the wetting properties of a surface by measuring the associated contact
angle (see Fig. 1) of a reference sessile drop, of a liquid B on the surface W
(also called substrate or wall) in equilibrium inside a medium A, leading to
the classical Young’s equation

yAB cos h=yAW − yBW (1.1)



Fig. 1. Young’s contact angle.

where yij refers to the interfacial tension between the two media i and j and
h is the equilibrium contact angle of the droplet on the substrate W. It is
assumed here that yAB is isotropic (an irrelevant hypothesis in the present
study which concerns the right hand side of Eq. (1.1)).

In the general case of an orientation dependent surface tension for the
AB-interface, the equilibrium shape of the sessile drop is determined by
the Winterbottom’s construction. (1) As a consequence of this construction
the contact angle h satisfies, in dimension d=1, the modified Young’s
equation:

cos h yAB(n) − sin h
“

“h
yAB(n)=yAW − yBW (1.2)

where n=(−sin h, cos h). This equation as well as the validity of Winter-
bottom’s construction has been proved from microscopic arguments,
within the 1-dimensional Solid-On-Solid models in refs. 2–4. For a truly
microscopic model, the 2-d Ising model (rather than a coarsed-grained one
like the SOS) a first proof of the modified equation (1.2) was given in
ref. 5. For this model the validity of Winterbottom’s construction was
shown in ref. 6. More recent proofs which hold in any dimensions are given
in refs. 7 and 8 (see also references therein).

Equation (1.2) holds for flat and homogeneous surfaces. However, in
practice a real surface is all except flat and homogeneous. It is therefore
important to generalize this equation to take into account the real surfaces.

It is known experimentally that whenever the surface is chemically
heterogeneous, say containing two species 1 and 2, a possible good equa-
tion is the Cassie’s law (9) given by

yAW − yBW=c(yAW1
− yBW1

)+(1 − c)(yAW2
− yBW2

) (1.3)

where c (resp. 1 − c) denotes the surface concentration of the specie 1 (resp. 2).
This leads to

cos h12=c cos h1+(1 − c) cos h2 (1.4)

whenever the equilibrium contact angles h1, h2, and h12 can be obtained.
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For rough substrates, one often uses the Wenzel’s law (1)

cos h| r=r cos h|1 (1.5)

where r refers to the roughness of the surface defined as the ratio of the
area A of the surface and the area Ā of its projection on the horizontal
plane.

In the present paper, we consider a SOS model and we extend these
results obtaining a generalized equation. It reduces to Cassie’s equation
whenever the substrate is flat but heterogeneous and to Wenzel’s equation
whenever the substrate is homogeneous but rough.

Let us stress that we assume within this approach that we are dealing
with equilibrium contact angles. The case of dynamics will be developed
elsewhere.

The paper is organized as follows. The model is introduced in Section 2.
The generalized Young’s relation for rough and heterogeneous substrates is
given in Section 3. In Section 4, we consider a particular geometry of an
homogeneous wall and show that there is a transition between a Wenzel’s
regime and a Cassie’s regime. The proofs of the results are given in the
Appendix.

2. THE MODEL

To describe the A | B interface between liquid and air for instance, we
consider a SOS type model on a d-dimensional lattice, d=1, 2, defined as
follows. At each site i of a finite box L … Zd, we assign an integer variable
hi which represents the height of the interface at this site. To a configura-
tion h={hi}i ¥ L, we associate its graph to be denoted C. Its area (or length)
is |C|=|L|+;Oi, jP … L |hi − hj |, where the sums runs over all pairs of nearest
neighbours of L.

We want here to study this interface on top of a substrate which is
both heterogeneous and rough. The substrate is thus represented by another
SOS interface W, union of two disjoint subsets W1 and W2, with disjoint
projections L1 … L and L2=L0L1, and respective height configurations
{h (1)

i }i ¥ L1
, and {h (2)

i }i ¥ L2
. We let h̄i=h(1)

i when i ¥ L1 and h̄i=h (2)
i when

i ¥ L2.
This wall W as well as W1, W2, L1, and L2 are assumed to be periodic

with periodicity a=(a1,..., ad) ¥ (Z+)d, that is h (1)
i =h (1)

i+a and h (2)
i =h (2)

i+a.
The respective roughness r1 and r2 read

rk=
|Wk |
|Lk |

=1+
;Oi, jP … Lk

|h (k)
i − h (k)

j |
|Lk |

, k=1, 2
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Fig. 2. A configuration of the interface C on the substrate W=W1 2 W2.

The energy of the system is defined by

HL(C, W)=JAB |C0(C 5 W)|+JAW1
|C 5 W1 |+JAW2

|C 5 W2 |

+JBW1
|W1 0(C 5 W1)|+JBW2

|W2 0(C 5 W2)| (2.1)

Here C is above W, which means hi \ h̄i for all i. and k=1 or 2. The set
C0(C 5 W) is relative to the AB microscopic interface, C 5 W1 (resp.
C 5 W2) is relative to the contact zone between A and W1 (resp. W2), and
W1 0(C 5 W1) (resp. W1 0(C 5 W2)) is relative to the contact zone between
B and W1 (resp. W2).

This system describes a system of droplets of a phase B inside a medium
A on top of the wall W. JAB, JAW1

, JAW2
, JBW1

, and JBW2
are the energies per

unit area of the corresponding microscopic interfaces (see Fig. 2).
Let us introduce the different free energies associated to the corre-

sponding macroscopic interfaces. To define the free energy associated to
the AB interface corresponding to a given slope n (a unit vector of Rd+1),
we introduce the Gibbs ensemble G(n, L) which consists of all configura-
tions with the boundary condition

hi=[n · i], i ¥ “L

where [n · i] denotes the integer part of the scalar product n · i, and the
boundary “L is the set of sites of L that have a nearest neighbour in Zd 0L.
We will take L to be the parallelepipedic box L={i ¥ Zd : |ik | [ Nak,
k=1,..., d}.

The surface tensions yAB and yAW are defined by the following ther-
modynamic limits

yAB(n)= lim
N Q .

−
1

bSn(L)
log C

C ¥ G(n, L)
exp[ − bJAB |C|] (2.2)
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where Sn(L) is the area of the part of the hyperplane orthogonal to n
passing through the origin and included in the infinite cylinder of Rd+1 with
basis L and,

yAW= lim
N Q .

−
1

b |L|
log Cg exp[ − bHL(C, W)] (2.3)

where the sum ;g runs over all configurations such that hi=h̄i for all
i ¥ “L. Finally,

yBW= lim
N Q .

JBW1
|W1 |+JBW2

|W2 |

|L|
=r1c1JBW1

+r2c2JBW2
(2.4)

where c1=|L1 |/|L| and c2=(1 − c1)=|L2 |/|L| are the respective concen-
trations of W1 and W2.

That the limits exist follows from known arguments, see e.g., refs. 2
and 10. In dimension one, the proof of (1.2) as well as the proof of the
Winterbottom’s construction for the model under consideration may be
obtained by an appropriate extension of the theory developed in refs. 3 and
4 in the case of a flat and homogeneous substrate.

3. THE GENERALIZED YOUNG’S RELATION

Consider a drop of a phase B on top of the substrate W in a medium A.
Three cases may appear: first, either the liquid B is always in contact with
W or, second, there may be droplets of A between the liquid and W, or,
finally, the medium A has no contact with the wall. Within our SOS model,
these situations mean, first, that the ground state of the Hamiltonian of the
system is given by the microscopic interface C that coincides with the sub-
strate W, second, that the ground state microscopic interface C leaves holes
between C and W, and, third, that the ground state microscopic interface C

has no contact with the wall.
In this section we develop the first case and generalize to heteroge-

neous substrates Theorem 3.1 of ref. 11, on the validity of Wenzel’s law for
a rough but homogeneous substrate. We obtain a combination of both,
Cassie’s and Wenzel’s laws.

To this end, we introduce the energy difference

H −

L(C | W)=HL(C, W) − HL(W, W) (3.1)
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Since HL(W, W)=JAW1
|W1 |+JAW2

|W2 |=(r1c1JAW1
+r2c2JAW2

) |L| the dif-
ferential wall tension Dy — yAW − yBW reads

Dy=r1c1(JAW1
− JBW1

)+r2c2(JAW2
− JBW2

)+ lim
N Q .

−
1

b |L|
log ZL (3.2)

where

ZL=C
C

e−bH Œ
L(C | W) (3.3)

Our first step is to write ZL as the partition function of a gas of elementary
excitations, simply also called excitations, which can be viewed as micro-
scopic droplets over the substrate. These excitations are defined as follows.
Given C and W, we consider the symmetric difference

D=(C 2 W)0(C 5 W) (3.4)

We decompose D into its maximal connected components di, called
excitations, D=d1 2 d2 2 · · · 2 dn. Here, two components are said con-
nected if they are connected considered as subsets of Rd+1. A set
{d1, d2,..., dn} of mutually disjoint excitations is called an admissible family
of excitations. Then there exists a microscopic interface (SOS configura-
tion) C, such that D=d1 2 d2 2 · · · 2 dn satisfies (3.4), namely

C=(D 2 W)0(D 5 W) (3.5)

This correspondence between the admissible families of excitations and
interface SOS configurations is one-to-one.

The energy difference H −

L reads in terms of families of excitations as

H −

L(C | W)=E(d1)+ · · · +E(dn) (3.6)

where

E(d)=JAB |d0(d 5 W)| − (JAW1
− JBW1

) |d 5 W1 | − (JAW2
− JBW2

) |d 5 W2 |
(3.7)

Indeed from the definitions (2.1) and (3.1) we have

H −

L=JAB |C0(C 5 W)| − (JAW1
− JBW1

) |W0(C 5 W1)|

− (JAW2
− JBW2

) |W0(C 5 W2)|
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which together with |C0(C 5 W)|=|D0(D 5 W)|, |W0(C 5 W1)|=|D 5 W1 |
and |W0(C 5 W2)|=|D 5 W2 | gives the expression (3.7) of the energy of
excitations. Then

ZL= C
D={d1,..., dn}

D
n

i=1
e−bE(di) (3.8)

where the sum runs over admissible families of excitations included in the
infinite cylinder WL with basis L, WL={(x1,..., xd+1) ¥ Rd+1: |xk | [ Nak,
k=1,..., d}, and the product is taken equal to 1 if D=”.

In the concept of excitation that we are considering, the configuration
C=W, in which the microscopic interface is following the wall, is the
ground state of the system. In other words, we assume that H −

L(C | W) > 0
for all C and N, or equivalently, that

min
d

E(d) > 0 (3.9)

In fact it is enough that this condition is satisfied for all excitations belong-
ing to the set W(a)={(x1,..., xd+1) ¥ Rd+1 : 0 [ xk [ ak, k=1,..., d}.

We next consider arbitrary families of elementary excitations non
necessarily mutually compatible and in which a given excitation can appear
several times. To any such family {d1,..., dn} a graph G(d1,..., dn) is asso-
ciated in such a way that to each excitation corresponds (in a one-to-one
way) a vertex of the graph, and there is an edge joining the vertices corre-
sponding to di and dj whenever di and dj are not compatible or coincide.
We introduce the clusters C as the non-empty arbitrary families of excita-
tions for which the associated graph G(d1,..., dn) is connected (this means
that the excitations draw a connected set in R2). Then we get

log ZL=C
C

FT(C) (3.10)

where the sum runs over all clusters whose excitations belong to the infinite
cylinder with basis L. The truncated functionals FT are defined by

FT(d1,..., dn)=
a(d1,..., dn)

n!
D

n

i=1
e−bE(di) (3.11)

a(d1,..., dn)= C
G … G(d1,..., dn)

(−1)a(G) (3.12)

Here the sum runs over all connected subgraphs G of G(d1,..., dn), whose
vertices coincide with the vertices of G(d1,..., dn), and a(G) is the number of
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Fig. 3. The wells wk, their projections, w0
k and the associated excitations dk(z).

edges of the graph G. If the cluster C contains only one excitation then
a(d)=1.

To express condition (3.9) in terms of the coupling constants, we need
a description of the substrate. Let Cz be the horizontal line at height z, that
is hi=z for all i. For any integer z such that inf i h̄i+1 [ z [ supi h̄i, the
difference W0Cz splits into components that lies either below or above Cz.
They are called wells in the first case and we denote them by wk(z), and
protrusions in the second case (see Fig. 3). We let w0

k(z) denote the projec-
tion of wk(z) on Cz and dk(z)=w0

k(z) 2 wk(z). We define

a1=max
z, k

|dk(z) 5 W1 |
|dk(z)|

, a2=max
z, k

|dk(z) 5 W2 |
|dk(z)|

(3.13)

Then condition (3.9) reads

C — JAB − a1(JAB+JAW1
− JBW1

) − a2(JAB+JAW2
− JBW2

) > 0 (3.14)

Let Wa denote the infinite periodic wall whose restriction to WL is given
by the previous height {h (1)

i }i ¥ L1
, {h (2)

i }i ¥ L2
, let Wa denote its restriction to

W(a), and let n1=3, n2=122.

Theorem 1. Assume that the condition (3.14) is satisfied, then, for
any bC > log nd+0.74, the following series, defining the differential wall
tension, is absolutely convergent

Dy=r1c1(JAW1
− JBW1

)+r2c2(JAW2
− JBW2

) −
1

ba1 · · · ad
C

b ¥ Wa

C
C ¦ b

FT(C)
|C 5 Wa |

(3.15)
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The proof of the theorem is postponed to the appendix. It establishes a
generalized law for rough and heterogeneous substrates:

Dy=r1c1(Dy)g
1 +r2c2(Dy)g

2 +O(e−bC) (3.16)

where (Dy)g
1 and (Dy)g

2 correspond to the case of a flat wall of the species 1
and 2 respectively.

A consequence of this result is that in the case of a rough and
heterogeneous wall both, the Wenzel’s and the Cassie’s laws, apply. These
laws are satisfied up to a small temperature dependent correction (tending
exponentially to zero with the temperature).

Referring to isotropic surfaces, one gets in terms of contact angles

cos h=r1c1 cos h flat
1 +r2c2 cos h flat

2 +O(e−bC) (3.17)

proving from microscopic argument the validity of Eq. (9.3) in ref. 12.
The conditions for the validity of Theorem 1 are twofold. The restric-

tion to low temperatures is of a technical nature and stems from the condi-
tions needed to ensure the convergence of the used low temperature
expansions. The condition (3.14) on the coupling parameters ensures that
the ground state of the system coincides with the wall. Let us mention the
study on Cassie’s law proposed in ref. 13 whose results do not rely on the
knowledge of ground states. This condition is intimately related to the
physics of the problem, and one may ask what happens whence increasing
JAW1

− JBW1
and JAW2

− JBW2
. This is the subject of the next section.

4. TRANSITION BETWEEN CASSIE’S AND WENZEL’S REGIME

We will restrict our analysis to the case of an homogeneous substrate.
Namely, we assume W2=”, JAW1

=JAW, JBW1
=JBW, and JAW2

=JBW2
=0.

Moreover we will first consider simple geometries for the wall. We let the
periodicity be a in all directions. In dimension d=2, we choose for any
i ¥ {(i1, i2) ¥ Z2 : 0 [ i1 [ a − 1, 0 [ i2 [ a − 1},

h̄i=˛ − b for 0 [ i1 [ c − 1, and 0 [ i2 [ c − 1

0 otherwise
(4.1)

The other heights are given by the periodicity: h̄(i1+na, i2+na)=h̄(i1, i2) see
Fig. 4. In dimension d=1, we choose h̄i=−b if 0 [ i [ c − 1, h̄i=0 if
c [ i [ a − 1, the periodicity giving the other heights : h̄i+na=h̄i.
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Fig. 4. The substrate surface W in dimensions 1 and 2.

4.1. Ground States

We define the specific energy per unit length as h(C, W)=
limN Q .

H(C, W)
|L| . We use Ck to denote the horizontal interface at height k,

i.e., such that hi=k for all i. Notice that,

Dh(W) — h(W, W) − rJBW=r(JAW − JBW), (4.2)

Dh(C0) — h(C0, W) − rJBW=c −JAB+(1 − c −)(JAW − JBW), (4.3)

Dh(Ck) — h(Ck, W) − rJBW=JAB, 1 [ k < +.. (4.4)

where,

c −=˛ (c/a)d if b > 0

1 − (c/a)d if b < 0
(4.5)

We let

r=˛1+
2db

c
if b > 0

1+
2d |b| cd − 1

ad − cd if b < 0
(4.6)

From these formula, we get the following diagram of ground states
(see Fig. 5). If JAW − JBW < r−1JAB the ground state is the wall W. If
r−1JAB < JAW − JBW) < JAB the ground state is C0. For JAW − JBW > JAB the
Ck are the ground states for any finite k \ 1.
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Fig. 5. The diagram of ground states.

4.2. Wenzel’s Regime

We will now consider the low temperature expansion of Dy when the
ground state is W. The analysis of Section 3 applies directly to that case.
The energy of excitations which are defined as in the previous section are
given by

Ew(d)=JAB |d0(d 5 W)| − (JAW − JBW) |d 5 W| (4.7)

By letting

Cw=
JAB − r(JAW − JBW)

1+r

we have

Ew(d) \ Cw |d| (4.8)

and as a corollary of Theorem 1 we get the

Corollary 2. Assume that JAB − r(JAW − JBW) > 0, then for bCw >
log nd+0.74, the following series, defining the differential wall surface
tension, is absolutely convergent

Dy=r(JAW − JBW) −
1

bad C
b ¥ Wa

C
C ¦ b

FT(C)
|C 5 Wa |

(4.9)

In this case Wenzel’s law applies in a first approximation.

4.3. Cassie’s Regime

We will now consider the low temperature expansion of Dy when the
ground state is C0.
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For that we introduce the energy difference

H −

L(C | C0)=HL(C, W) − HL(C0, W) (4.10)

We have

H −

L(C | C0)=JAB |C0C0 | − [JAB − (JAW − JBW)](|C 5 W| − |C0 5 W|)
(4.11)

and the differential wall tension reads

Dy=c −JAB+(1 − c −)(JAW − JBW)+ lim
N Q .

−
1

b |L|
log Z0

L (4.12)

where

Z0
L=C

C

e−bH Œ
L(C | C0) (4.13)

We now define the excitations as follows. Given C and C0, we consider the
symmetric difference

D=(C 2 C0)0(C 5 C0) (4.14)

As in the previous section, we decompose D in maximal connected com-
ponents D=d1 2 d2 2 · · · 2 dn. The energy difference H −

L reads in terms of
families of excitations as H −

L(C | C0)=E0(d1)+ · · · +E0(dn) where

E0(d)=Jav(d)+[JAB − (JAW − JBW)](|d 5 Wu | − |d 5 Wd |) (4.15)

Here av(d) denotes the length of the vertical cells (bonds in dimension 1, or
plaquettes in dimension 2) of d, Wu=W 5 C0, and Wd=W0Wu. Then,

Z0
L= C

D={d1,..., dn}
D

n

i=1
e−bE0(di) (4.16)

and log ZL=;C FT
0 (C) where the truncated functionals FT

0 are defined by
(3.11) as before, but with E replaced by E0.

We let

C0=min 3JAW − JBW

1+c/d
,

JAB − (JAW − JBW)
2(cd+1)

,
r(JAW − JBW) − JAB

2r
4
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if b > 0 and

C0=min 3JAB − (JAW − JBW)
4(a2 − c2)

,
(JAW − JBW) − JAB/r

2c+a2 − c2
4

if b < 0 and d=2.

Theorem 3. Assume that (1/r) JAB < JAW − JBW < JAB. Then, for
bC0 > log nd+0.74, the following series, defining the differential wall
tension, is absolutely convergent

Dy=c −JAB+(1 − c −)(JAW − JBW) −
1

bad C
b ¥ Wa

C
C ¦ b

FT
0 (C)

|C 5 Wa |
(4.17)

The proof is given in Appendix A.
Corollary 2 and Theorem 3 give the following transition between the

Wenzel’s and Cassie’s regime:

(i) If JAW − JBW < JAB/r, then

Dy=r(Dy)g+O(e−bCw) (4.18)

which corresponds the Wenzel’s law

(ii) If JAB/r < JAW − JBW < JAB, then

Dy=c −yAB+(1 − c −)(Dy)g+O(e−bC0) (4.19)

which corresponds the Cassie’s law

Here (Dy)g refers to the flat wall.

4.4. The Intermediate Regime

Let us mention that when

JAW − JBW=
1
r

JAB

a degeneracy of ground states appears, their number tending to infinity in
the thermodynamic limit. Indeed, with b > 0, any configuration following,
at each pore, either the wall “W or the horizontal plane C0, is a ground
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state with specific energy given by (4.2) or (4.3) (both expressions coincide
in this case). This leads to the existence of a specific residual entropy at
zero temperature

S — lim
b Q .

lim
N Q .

1
|L|

log ZL=
1
ad log 2

This might suggest that Dy behaves like Dh − S/b around the point
JAW − JBW=1

r JAB. We are planning to examine in a next work the possi-
bility of such kind of corrections at low temperature.

Remark 4. The discussion of the previous subsections extends to
more general geometries of the wall. One can consider for example a wall
composed of different rectangular wells with sizes given by (bk, ck). The
phase diagram of ground states will then exhibit different transition
lines given by the corresponding r’s. Whence increasing the parameter
JAW − JBW, the ground states will move from the wall W to successive
grounds states that fill different wells up to C0.

APPENDIX A

Proof of Theorem 1

The first ingredient is the following lower bound on the energy:

E(d) \ C |d| (A.1)

This bound follows from definitions (3.7) (3.13) by taking into account
some easy geometrical observations.

The bound (A.1) ensures the convergence of the series ;d ¦ x e−bE(d) as
soon as bC > log nd, since the number of polygons (or of excitations d) of
size a passing to a given point is less then na

d .
Moreover using this bound, the proof of formula (3.15) as well as that

of the absolute convergence of the series can be established following
ref. 14 (Chapter 4) in which the low temperature contours of the Ising
model were considered in the role played here by the excitations. Indeed,
the convergence of the cluster expansion holds, cf. refs. 15 and 16, as soon
as one can find a positive real-valued function m(d) such that

e−bE(d)m(d)−1 exp 3C
dŒid

m(d −)4 < 1 (A.2)
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where the sum runs over excitations d − incompatible with d: this relation is
denoted by d −i d and means that d − do not intersect d. Taking into account
the above remark on the entropy of excitations, that the lengths of excitations
are even with minimal value |dmin |=4, that ;dŒid m(d −) [ |d| ;dŒ ¦ b m(d −), and
choosing m(d)=(nde t)−|d|, inequality (A.2) will be satisfied whenever

bC > log nd+t+
e−4t

1 − e−2t

The value t0 4 .61 that minimizes the function t+[e−4t/(1 − e−2t)] provides
the value 0.74 given in the theorem. The expression (4.9) then follows from
(3.2) and (3.10) by letting N Q ., taking into account that log ZL equals

C
b ¥ W

C
C ¦ b

FT(C)
|C 5 Wa |

up to a term that will disappear in the thermodynamic limit. L

Proof of Theorem 3

The first step is to prove the following lower bound on the energy:

E0(d) \ C0 |d| (A.3)

Let us start with the

1-Dimensional Case

We partition d in two disjoint subsets d+ and d− as follows. A vertical
bond belongs to d+ (respectively d−) if it is above C0 (respectively below C0).
Next, consider the vertical line x=i+1/2, i ¥ Z. These lines intersect d in
two points, one at height 0 and the other at positive or negative height. In
the first case we let the two intersected bonds belong to d+ and in the
second case we let them belong to d−. Then d+ as well as d− splits into
maximal connected components: d+=d+

1 2 d+
2 2 · · · 2 d+

n , d−=d−
1 2 d−

2

2 · · · 2 d−
m , and the energy reads

E0(d)= C
n

k=0
E0(d+

k )+ C
m

k=0
E0(d−

k ) (A.4)

By Eq. (4.15), the energy of the components d+ and d− reads

E0(d+
k )=Jav(d+

k )+(J − K) |d+
k 5 Wu |

E0(d−
k )=Jav(d−

k ) − (J − K) |d−
k 5 Wd |

(A.5)
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where hereafter J=JAB, K=JAW − JBW. We will drop below the subscript k
to d ±

k but still thinking of it as a component of d ±.
Using ah(d−) to denote the number of horizontal bonds of d−, it is easy

to realize that

E0(d−) \ ˛Kav(d−) if d− 5 C−b=”

Kav(d−) − (J − K)
ah(d−)

2
if d− 5 C−b ] ”

(A.6)

by taking into account that J \ K and that the number of horizontal bonds
of d− 5 Wd does not exceed ah(d−)/2.

When d− 5 C−b=”, the two obvious bounds ah(d−) [ 2c and
av(d−) \ 2, leads immediately to the inequality (c+1) av(d−) \ ah(d−)+
av(d−)=|d−| so that

E0(d−) \
K

c+1
|d−| (A.7)

Coming to the case d− 5 C−b ] ”, we note that the excitations satisfy
av(d−) \ 2b. Then

E0(d−) \ K 5av(d−)+
ah(d−)

2
6− J

ah(d−)
2

\ 5av(d−)+
ah(d−)

2
61K − J max

ah(d
−)

2

av(d−)+ah(d
−)

2

2

\ 5av(d−)+
ah(d−)

2
61K − J max

ah(d
−)

2

2b+ah(d
−)

2

2

The maximum is obtained whenever ah(d−) reaches its maximum value, i.e.,
for ah(d−)=2c. Thus, we get in that case

E0(d−) \ (K − J/r)
|d−|

2
(A.8)

Let us now turn to E0(d+). When d+ 5 Wu=”, with the help of
inequalities ah(d+) [ 2c and av(d+) \ 2, we argue as above for the proof of
(A.7), to get

E0(d+) \
J

c+1
|d+| (A.9)
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Coming to the case d+ 5 Wu ] ”, it suffices to realize that
|d+ 5 Wu | \ 1

2(c+1) ah(d+) to get

E0(d+) \ Jav(d+)+
J − K

2(c+1)
ah(d+) \

J − K
2(c+1)

|d+| (A.10)

Then, the bound (A.3) follows, in dimension 1 for b > 0, from inequalities
(A.7)–(A10). The situation b < 0 is obviously identical inverting the role of
c and a − c, and thus we will not deal with it. We now turn to the proof in
the

2-Dimensional Case

As in the 1-dimensional case, we partition d in two disjoint subsets d+

and d−. A vertical plaquette belongs to d+ (respectively d−) if it is above
C0 (respectively below C0). Next we consider the vertical line x=i+
(1/2, 1/2), i ¥ Z2. These lines intersect d in two points, one at height 0 and
the other at positive or negative height. We let the two intersected plaquet-
tes belong to d+ in the first case and to d− in the second case. Then again,
the energy is given by (A.4) and (A.5). We split the rest of the proof of
(A.3) in two part dealing first with

The Case b > 0. Using a
g
h (d−)=ah(d− 5 C−b) to denote the number

of horizontal plaquettes of d− 5 C−b, we notice that E0(d−) satisfies the
lower bounds

E0(d−) \ ˛Kav(d−) if d− 5 C−b=”

Kav(d−) − (J − K)[av(d−)+a
g
h (d−)] if d− 5 C−b ] ”

(A.11)

When d− 5 C−b=”, the isoperimetric inequality yields av(d−) \

4 `ah(d−)/2. Since ah(d−) [ 2c2 we get av(d−) \ (2/c) ah(d−) so that

E0(d−) \
K

1+c
2

|d−| (A.12)

Coming to the case d− 5 C−b ] ”, note that, by isoperimetric inequality,
the excitations satisfy av(d−) \ 4b `a

g
h (d−). Then we have

Rigorous Generalization of Young’s Law 123



E0(d−) \ K[av(d−)+a
g
h (d−)] − Ja

g
h (d−)

\ [av(d−)+a
g
h (d−)]1K − J max

a
g
h (d−)

av(d−)+a
g
h (d−)

2

\ [av(d−)+a
g
h (d−)]1K − J max

a
g
h (d−)

4b `a
g
h (d−)+a

g
h (d−)

2

\ [av(d−)+a
g
h (d−)]1K − J max

`a
g
h (d−)

4b+`a
g
h (d−)

2

The maximum is reached for the maximum value of a
g
h (d−), i.e., for

a
g
h (d−)=c2. Thus, we get in that case

E0(d−) \ (K − J/r)
|d−|

2
(A.13)

Let us now turn to E0(d+). When d+ 5 Wu=”, the isoperimetric
inequality yields av(d−) \ 4 `ah(d−)/2. As above for the proof of (A.12)
the obvious inequality ah(d−) [ 2c2 leads to av(d−) \ (2/c) ah(d−) so that

E0(d+) \
J

1+c/2
|d+| (A.14)

Coming to the case d+ 5 Wu ] ”, we notice that |d+ 5 Wu | \ 1
2(c2+1)

ah(d+)
so that

E0(d+) \ Jav(d+)+
J − K

2(c2+1)
ah(d+) \

J − K
2(c2+1)

|d+| (A.15)

Then, the bound (A.3) follows, in dimension 2 for b > 0, from inequalities
(A.12)–(A15). We finally turn to

The Case b < 0. As before E0(d−) satisfy the lower bounds

E0(d−) \ ˛Kav(d−) if d− 5 C−b=”

Kav(d−) − (J − K)[av(d−)+a
g
h (d−)] if d− 5 C−b ] ”

(A.16)

We first notice that the excitations satisfy

av(d−) \
4c

2(a2 − c2)
ah(d−) (A.17)
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so that when d− 5 C−b=”, one has

E0(d−) \
2cK

2c+a2 − c2 |d−| (A.18)

Coming to the case d− 5 C−b ] ”, we notice that the excitations satisfy
furthermore

av(d−) \
4 |b| c

(a2 − c2)
a

g
h (d−) (A.19)

where a
g
h (d−)=ah(d− 5 C−b). Then we have

E0(d−) \ Jav(d−) − (J − K)(av(d−)+a
g
h (d−))

\ [av(d−)+a
g
h (d−)]1K − J

a
g
h (d−)

av(d−)+a
g
h (d−)

2

\ [av(d−)+a
g
h (d−)]1K − J max

a
g
h (d−)/av(d−)

1+a
g
h (d−)/av(d−)

2

The maximum is reached for a
g
h (d−)/av(d−)= 4 |b| c

(a2 − c2)
, and thus

E0(d−) \ (K − J/r)[av(d−)+a
g
h (d−)]

which combined with inequality (A.17) implies

E0(d−) \
2c(K − J/r)
2c+a2 − c2 |d−| (A.20)

Let us turn to E0(d+). When d+ 5 Wu=” the excitations satisfy
(A.17) so that by arguing as in the proof of (A.18), we get

E0(d+) \
2cJ

2c+a2 − c2 |d+| (A.21)

Coming finally to the case d+ 5 Wu ] ” we first recall that

E0(d+)=Jav(d+)+(J − K) |d+ 5 Wu | (A.22)

We will prove a lower bound on the RHS of (A.22) with the help of an
auxiliary excitation d̄. We first deal with simple excitations. Namely, we
assume that the horizontal plaquettes of d+ lies on the planes at height 0
and 1, that the vertical projection of d+ 5 C1 on the plane C0 gives d+ 5 C0,
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and finally that the vertical part of d+ is the set of vertical plaquettes that
intersect both the boundaries “(d+ 5 C0) and “(d+ 5 C1). Here, the bound-
ary “(d+ 5 C0) consists of the set of bonds of C0 that belong both to a
plaquette of d+ 5 C0 and to a plaquette of its complement C0 0(d+ 5 C0).
Analogously, the boundary “(d+ 5 C1) is the set of bonds of C1 that belong
both to a plaquette of d+ 5 C1 and to a plaquette of C1 0(d+ 5 C1). We now
construct the auxiliary excitation d̄ as follows. The horizontal part of d̄

consists to the set obtained by adding to the horizontal part of d+ all the
horizontal plaquettes p ¥ C0 at distance less than a2 − c2 of any point
x ¥ d+ 5 C0, and all the horizontal plaquettes p ¥ C1 at distance less than
a2 − c2 of any point x ¥ d+ 5 C1, i.e.,

d̄ 5 C0={(d+ 5 C0) 2 (p ¥ C0) : dist(p, x) [ a2 − c2, x ¥ d+ 5 C0}

d̄ 5 C1={(d+ 5 C1) 2 (p ¥ C1) : dist(p, x) [ a2 − c2, x ¥ d+ 5 C1}

The vertical part of d̄ is the set of vertical plaquettes that intersect both
“(d̄ 5 C0) and “(d̄ 5 C1). Then we have

ah(d̄ 5 Wu) \
1

a2 − c2 ah(d̄)

On the other hand it is clear that

av((d̄0d+) 5 Wu) [ 2av(d+)

Since av(d̄ 5 Wu)=av(d+ 5 Wu)+av((d̄0d+) 5 Wu), and obviously ah(d̄) \

ah(d+), the two previous inequalities imply

2av(d+)+av(d+ 5 Wu) \
1

a2 − c2 ah(d+)

It is also clear that this inequality holds true for any d+ since the geometry
considered above is the less favorable one. From this inequality, we deduce
by (A.22):

E0(d+) \
J − K

4(a2 − c2)
|d+| (A.23)

Then, the bound (A.3) follows, in dimension 2 when b < 0, from inequali-
ties (A.20) and (A.23).

From this bound, we get the absolute convergence of the cluster
expansion and formula 4.17 as in the proof of Theorem 1. L
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